主要功能
单独或同步测量叶绿素荧光和 P700
两个光系统的诱导动力学曲线(包括快相和慢相)
两个光系统的快速光曲线和光响应曲线
淬灭分析、暗驰豫分析
典型的 P700 曲线测量
通过叶绿素荧光和 P700 的同步测量获知两个光系统的电子传递动力学、电子载体库的大小、围绕 PSI 的环式电子传递动力学等
通过测量 P515/535 信号变化测量跨膜质子动力势 pmf 及其组分跨膜质子梯度 ΔpH 和跨膜电位 Δψ
“P515 Flux”信号能原位反映活体样品处于稳态的偶联电子和质子的流动速率
通过测量 NADPH 荧光估算 NADP 的还原程度
通过测量 9-AA 荧光来估算跨膜质子梯度 ΔpH
测量参数
PS II参数: Fo, Fm, F, Fm’, Fv/Fm, Y(II) 即 △F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I参数: P700, Pm, Pm’, P700ox, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
P515/535参数:质子动力势pmf,跨膜质子梯度 ΔpH,跨膜电位 Δψ 等
NADPH/9-AA参数:NADP 的还原程度,ΔpH 等
其他测量参数:Post-Illumination(鼓包),PQ-Pool(PQ库)等
应用领域
相当于两台 PAM-101/ 102/ 103 的功能,可同时测量光系统II活性(调制叶绿素荧光)和光系统I活性(P700 吸收变化),可用于、植物生理学、农学、林学、园艺学等领域光合作用机理研究。
扩展模块 P515/535 可测量跨膜质子动力势 pmf 及其组分跨膜质子梯度 ΔpH 和跨膜电位 Δψ 等,是叶绿素循环和光保护研究的强大工具。
扩展模块NADPH/9-AA,可测量 NADPH 荧光和 9-AA 荧光,估算 NADP 的还原程度和跨膜质子梯度 ΔpH。
主要技术参数
主机:通用型(DUAL-C),可接标准检测器,可扩展 P515/535,NADPH/9AA 等多种模块。
P700 双波长测量光:LED,830 nm 和 875 nm
PSII 荧光测量光:LED,460 nm(DUAL-DB)或 620 nm(DUAL-DR)
红色光化光:LED 阵列,635 nm;最大连续光强 3000 μmol m-2 s-1
蓝色光化光:LED,460 nm;最大连续光强 1100 μmol m-2 s-1
单周转饱和闪光(ST):200000 μmol m-2 s-1,5~50 μs 可调
多周转饱和闪光(MT):20000 μmol m-2 s-1,1~1000 ms 可调
远红光:720nm
选购指南
一、高等植物叶片测量基本款
系统组成:通用型主机,标准版检测单元,数据线,工作台,软件等
注意:高等植物叶片测量红光检测器(Dual-DR)和蓝光检测器(Dual-DB)可任选其一
高等植物叶片测量基本款 |
二、悬浮样品测量基本款
系统组成:通用型主机,标准版检测单元,悬浮液的光学单元,数据线,工作台,软件等
注意:藻类测量时,蓝藻请选择红光检测器(Dual-DR),其他藻类可选蓝光检测器(Dual-DB)
悬浮样品测量基本款 |
同步测量 PSII(红色)和 PSI(蓝色)的诱导曲线 | 同步测量 PSII(红色)和 PSI(蓝色)的光响应曲线 | 典型的 P700 测量曲线 |
| | |
打开饱和脉冲时叶绿素荧光信号(红色)和 P700(蓝色)信号变化 | 以线性时间测量的荧光快速动力学曲线 | 以对数时间测量的荧光快速动力学曲线 |
三、其他扩展模块
扩展测量一:P515/535模块
P515/535 模块是 WALZ 公司为 DUAL-PAM-100 设计的测量模块,可以直接连接 DUAL-PAM-100 的主机,测量 550-510 nm 的差式吸收以及 535 nm 波长的信号变化。P515/535 模块可以测量光合器官的跨膜质子动力势(pmf)、跨膜电位(Δψ)、跨膜质子梯度(ΔpH)和玉米黄素(Zea)变化等内容。此外,该模块还提供一种特殊的 “P515 Flux” 操作模式,可让光化光以光-暗脉冲形式打开-关闭(1/1调制光/暗),原位测量活体样品处于稳态的偶联电子和质子的流动速率。 | |||
通过测量 P515 变化得出质子动力势(pmf)两个组分 Δψ 和 ΔpH | 通过测量535 nm变化得出质子动力势(pmf)及其组分ΔpH | 同步测量P515和535 nm信号的光响应曲线 |
扩展测量二:NADPH/9-AA 模块
NADPH/9-AA 模块是 WALZ 公司为 DUAL-PAM-100 设计的测量模块,可以直接连接 DUAL-PAM-100 的主机,测量 NADPH 荧光和 9-AA 荧光。NADPH 荧光可用于估算 NADP 的还原程度,9-AA 荧光用于估算跨膜质子梯度 ΔpH。该模块的一个很大特色是与标准探头联用,在国际上第一次做到了同步测量叶绿素荧光与 NADPH 荧光。
NADPH 探头图示 | 同步测量 NADPH 荧光(蓝色)与叶绿素荧光(红色) |
扩展测量三:与光合仪 GFS-3000 联用
|
专为 DUAL-PAM-100 与 GFS-3000 的同步测量设计,由特制叶室(带温度和PAR传感器)、风扇、导光杆、电子盒与支架构成。同步测量时,光源完全由 DUAL-PAM-100 的测量头提供,气体交换由 GFS-3000 的红外分析器检测,P700 和叶绿素荧光由 DUAL-PAM-100 的检测器测量。 |
四、其他可选附件
1,Dual-DPD:单独的光电二极管检测器单元,通过导光杆连接到 ED‑101US/MD 上,配置 NADPH 模块时推荐选配。
2,Dual-DPM:单独的光电倍增管检测器单元,用于较稀的悬浮液荧光测量,需要装配到 ED-101US/MD 上使用。必须要同时配置测量头 DUAL-DB 或 DUAL-DR 来激发调制荧光。
3,ED-101US/T: 控温装置,安装在 ED-101US/MD 上,为悬浮液控温;可外接循环水浴来控温,
4,US-SQS/WB: 球状微型光量子探头,可插入样品杯中测量 PAR;由主机 DUAL-C 控制。
5,PHYTO-MS:磁力搅拌器,连接到光学单元 ED-101US/MD 的底部对悬浮液进行搅拌。
6,DUAL-OP:拟南芥等小叶片测量用适配器,特制透光小孔适配器套装,直径 7 mm、5 mm 和 3 mm,对于拟南芥等小叶片的 P700 测量非常重要!
产地:德国 WALZ
参考文献
数据来源:光合作用文献 Endnote 数据库,更新至 2021 年 1月,文献数量超过 10000 篇
原始数据来源:Google Scholar
1. Burlacot, A., et al. (2022). "Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism." Nature.
2. Forner, J., et al. (2022). "Targeted introduction of heritable point mutations into the plant mitochondrial genome." Nature Plants.
3. Capó-Bauçà, S., et al. (2022). "Correlative adaptation between Rubisco and CO2-concentrating mechanisms in seagrasses." Nature Plants 8(6): 706-716.
4. Kusama, S., et al. (2022). "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation." Nature communications 13(1): 3067.
5. Mallén-Ponce, M. J., et al. (2022). "Photosynthetic assimilation of CO2 regulates TOR activity." PNAS 119(2): e2115261119.
6. Basso, L., et al. (2022). "Flavodiiron proteins enhance the rate of CO2 assimilation in Arabidopsis under fluctuating light intensity." Plant Physiology.
7. Baudry, K., et al. (2022). "Adenylates regulate Arabidopsis plastidial thioredoxin activities through the binding of a CBS domain protein." Plant Physiology.
8. Torrado, A., et al. (2022). "Directing cyanobacterial photosynthesis in a cytochrome c oxidase mutant using a heterologous electron sink." Plant Physiology.
9. Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.
10. Ho, T. T. H., et al. (2022). "Photosystem I light-harvesting proteins regulate photosynthetic electron transfer and hydrogen production." Plant Physiology 189(1): 329-343.
11. Ji, D., et al. (2022). "NADP+ Supply Adjusts the Synthesis of Photosystem I in Arabidopsis Chloroplasts." Plant Physiology.
12. Fitzpatrick, D., et al. (2022). "True oxygen reduction capacity during photosynthetic electron transfer in thylakoids and intact leaves." Plant Physiology.
13. Seydoux, C., et al. (2022). "Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation." New Phytologist n/a(n/a).
14. Bethmann, S. T. (2022). "Light Regulation of Zeaxanthin Epoxidase in Plants."
15. Cecchin, M., et al. (2022). "Astaxanthin and eicosapentaenoic acid production by S4, a new mutant strain of Nannochloropsis gaditana." Microbial Cell Factories 21(1): 117.
16. Chen, Q., et al. (2022). "Arginine Increases Tolerance to Nitrogen Deficiency in Malus hupehensis via Alterations in Photosynthetic Capacity and Amino Acids Metabolism." Frontiers in Plant Science 12.
17. Chen, X., et al. (2022). "Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis." Scientia Horticulturae 305: 111371.
18. Choi, J., et al. (2022). "Effect of far-red and UV-B light on the growth and ginsenoside content of ginseng (Panax ginseng C. A. Meyer) sprouts aeroponically grown in plant factories." Horticulture, Environment, and Biotechnology 63(1): 77-87.
19. Dhokne, K., et al. (2022). "Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress." Plant Physiology and Biochemistry.
20. Ermakova, M., et al. (2022). "Enhanced abundance and activity of the chloroplast ATP synthase in rice through the overexpression of the AtpD subunit." Journal of Experimental Botany.
21. Espinoza-Corral, R. and P. K. Lundquist (2022). "The plastoglobule-localized protein AtABC1K6 is a Mn<sup>2+</sup>-dependent kinase necessary for timely transition to reproductive growth." Journal of Biological Chemistry.
22. Fang, Y., et al. (2022). "Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center." Journal of Biological Chemistry: 101783.
23. Fattore, N., et al. (2022). "An increase in the membrane lipids recycling by PDAT overexpression stimulates the accumulation of triacylglycerol in Nannochloropsis gaditana." Journal of Biotechnology.
24. Filaček, A., et al. (2022). "Pre-Acclimation to Elevated Temperature Stabilizes the Activity of Photosystem I in Wheat Plants Exposed to an Episode of Severe Heat Stress." Plants 11(5): 616.
25. Gao, P., et al. (2022). "PALE‐GREEN LEAF 1, a rice cpSRP54 protein, is essential for the assembly of the PSI‐LHCI supercomplex." Plant Direct 6(8): e436.
26. Goto, M., et al. (2022). "Metabolic changes contributing to large biomass production in the Arabidopsis ppGpp-accumulating mutant under nitrogen deficiency." Planta 255(2): 48.
27. Guan, C., et al. (2022). "Physiological functional traits explain morphological variation of Ulva prolifera during the drifting of green tides." Ecology and evolution 12(1): e8504.
28. Hatano, J., et al. (2022). "NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway." Photosynthesis Research.
29. Hu, L.-y., et al. (2022). "Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple." Journal of Integrative Agriculture 21(7): 1968-1981.
30. HU, W., et al. (2022). "24-epibrassinolide improved chilled tomato photosynthetic performance by stabilizing electron transport chain and function of photosystem II." Biologia Plantarum 66: 178-187.
31. Hui, L., et al. (2022). "Overexpression of Rice Monogalactosyldiacylglycerol Synthase OsMGD Leads to Enhanced Salt Tolerance in Rice." Agronomy 12(3): 568.
32. Iqbal, N., et al. (2022). "Fumonisin B1-Induced Oxidative Burst Perturbed Photosynthetic Activity and Affected Antioxidant Enzymatic Response in Tomato Plants in Ethylene-Dependent Manner." Journal of Plant Growth Regulation.
33. Jiao, X., et al. (2022). "Effects of rising VPD on the nutrient uptake, water status and photosynthetic system of tomato plants at different nitrogen applications under low temperature." Scientia Horticulturae 304: 111335.
34. Jin, Y., et al. (2022). "Induction of polyploid Malus prunifolia and analysis of its salt tolerance." Tree physiology.
35. Kusama, S., et al. (2022). "Dissection of respiratory and cyclic electron transport in Synechocystis sp. PCC 6803." Journal of Plant Research.
36. Lazar, D., et al. (2022). "Light quality, oxygenic photosynthesis and more." Photosynthetica.
37. Li, C., et al. (2022). "Chloroplast Thylakoidal Ascorbate Peroxidase, PtotAPX, Has Enhanced Resistance to Oxidative Stress in Populus tomentosa." International journal of molecular sciences 23(6): 3340.
38. Li, H.-G., et al. (2022). "The in vivo performance of a heat shock transcription factor from Populus euphratica, PeHSFA2, promises a prospective strategy to alleviate heat stress damage in poplar." Environmental and Experimental Botany: 104940.
39. Li, M., et al. (2022). "Running title: ABA pathway meets CBF pathway at CmADC." Horticulture research.
40. Li, M., et al. (2022). "Short-term suboptimal low temperature has short- and long-term effects on melon seedlings." Scientia Horticulturae 297: 110967.
41. Li, W.-t., et al. (2022). "Extension of the EICA hypothesis for invasive Chromolaena odorata." Acta Oecologica 114: 103803.
42. Li, X., et al. (2022). "Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002." 10(7): 1313.
43. Liebsch, D., et al. (2022). "Metabolic control of arginine and ornithine levels paces the progression of leaf senescence." Plant Physiol.
44. Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.
45. Liu, X., et al. (2022). "Formation of resting cells is accompanied with enrichment of ferritin in marine diatom Phaeodactylum tricornutum." Algal Research 61: 102567.
46. Liu, Z., et al. (2022). "Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF)." Remote Sensing of Environment 271: 112893.
47. Lyu, H. and D. Lazár (2022). "Analyzing the effect of ion binding to the membrane-surface on regulating the light-induced transthylakoid electric potential (ΔΨm)." 13.
48. Manjre, S., et al. (2022). "Evaluating the effect of seasonal conditions on metabolism and photosynthetic performance of Picochlorum sp. and its influence on biomass productivity." Bioresource Technology Reports: 101029.
49. Manoyan, J., et al. (2022). "Growth characteristics, biohydrogen production and photochemical activity of photosystems in green microalgae Parachlorella kessleri exposed to nitrogen deprivation." International Journal of Hydrogen Energy.
50. Manzoor, H., et al. (2022). "Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance." Frontiers in Plant Science 13.
51. Mao, H.-T., et al. (2022). "Temporal and spatial biomonitoring of atmospheric heavy metal pollution using moss bags in Xichang." Ecotoxicology and Environmental Safety 239: 113688.
52. Mehta, P., et al. (2022). "Synergistic integration of wastewaters from second generation ethanol plant for algal biofuel production: an industrially relevant option." 3 Biotech 12(1): 34.
53. Miller, N. T., et al. (2022). "Cyclic Electron Flow-Coupled Proton Pumping in Synechocystis sp. PCC6803 Is Dependent upon NADPH Oxidation by the Soluble Isoform of Ferredoxin:NADP-Oxidoreductase." Microorganisms 10(5): 855.
54. Mohammad Aslam, S., et al. (2022). "Heat-Induced Photosynthetic Responses of Symbiodiniaceae Revealed by Flash-Induced Fluorescence Relaxation Kinetics." 9.
55. Noguera, M. M., et al. (2022). "Involvement of glutamine synthetase 2 (GS2) amplification and overexpression in Amaranthus palmeri resistance to glufosinate." Planta 256(3): 57.
56. Qin, L., et al. (2022). "Physiological, Metabolic and Transcriptional Responses of Basil (Ocimum basilicum Linn. var. pilosum (Willd.) Benth.) to Heat Stress." Agronomy 12(6): 1434.
57. Rath, J. R., et al. (2022). "Temperature-induced reversible changes in photosynthesis efficiency and organization of thylakoid membranes from pea (Pisum sativum)." Plant Physiology and Biochemistry 185: 144-154.
58. Ravi Kiran, B. and S. Venkata Mohan (2022). "Phycoremediation potential ofTetradesmus sp.SVMIICT4in treating dairy wastewaterusingFlat-Panel photobioreactor." Bioresource Technology 345: 126446.
59. Samanta, L., et al. (2022). "Differential catalase activity and tolerance to hydrogen peroxide in the filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120." Archives of Microbiology 204(2): 121.
60. Schansker, G., et al. (2022). "Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics." Frontiers in Plant Science | 13.
61. Sharma, Y., et al. (2022). "Lead accumulation, translocation, distribution and photosynthetic toxicity in Cyamopsis tetragonoloba." Soil and Sediment Contamination: An International Journal: 1-18.
62. Sheikhalipour, M., et al. (2022). "Melatonin and TiO2 NPs Application-Induced Changes in Growth, Photosynthesis, Antioxidant Enzymes Activities and Secondary Metabolites in Stevia (Stevia rebaudiana Bertoni) Under Drought Stress Conditions." Journal of Plant Growth Regulation.
63. Sheikhalipour, M., et al. (2022). "Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes." BMC Plant Biology 22(1): 380.
64. Shi, Q., et al. (2022). "Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato." Plants 11(2): 195.
65. Solymosi, D., et al. (2022). "Nitric oxide represses photosystem II and NDH-1 in the cyanobacterium Synechocystis sp. PCC 6803." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1863(1): 148507.
66. Soni, S. K., et al. (2022). "Papaya Leaf Curl Virus (PaLCuV) Infection on Papaya (Carica papaya L.) Plants Alters Anatomical and Physiological Properties and Reduces Bioactive Components." Plants 11(5): 579.
67. Steen, C. J., et al. (2022). "Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations." Plant, Cell
68. Environment Progress & Sustainable Energy.
69. Suganami, M., et al. (2022). "Expression of flavodiiron protein rescues defects in electron transport around PSI resulting from overproduction of Rubisco activase in rice." Journal of Experimental Botany.
70. Sun, H., et al. (2022). "The response of photosystem I to fluctuating light is influenced by leaf nitrogen content in tomato." Environmental and Experimental Botany 193: 104665.
71. Suslichenko, I. S., et al. (2022). "The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves." Plant Physiology and Biochemistry.
72. Takeuchi, K., et al. (2022). "The ability of P700 oxidation in photosystem I reflects chilling stress tolerance in cucumber." Journal of Plant Research.
73. Vannoni, M., et al. (2022). "Resilience of a microphytobenthos community from the Severn Estuary, UK, to chlorination: A mesocosm approach." Marine pollution bulletin 176: 113443.
74. Wan, X., et al. (2022). "Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures." Toxicon 210: 49-57.
75. Wang, H., et al. (2022). "Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia." Plant Science 317: 111207.
76. Wu, F., et al. (2022). "Assembly of LHCA5 into PSI blue shifts the far-red fluorescence emission in higher plants." Biochemical and biophysical research communications 612: 77-83.
77. Xia, H., et al. (2022). "Sex-Specific Physiological Responses of Populus cathayana to Uranium Stress." Forests 13(7): 1123.
78. Yang, J., et al. (2022). "The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus domestica)." Environmental and Experimental Botany 194: 104695.
79. Yanykin, D. V., et al. (2022). "Effect of Up-Converting Luminescent Nanoparticles with Increased Quantum Yield Incorporated into the Fluoropolymer Matrix on Solanum lycopersicum Growth." Agronomy 12(1): 108.
80. Yudina, L., et al. (2022). "Influence of Burning-Induced Electrical Signals on Photosynthesis in Pea Can Be Modified by Soil Water Shortage." Plants 11(4): 534.
81. Yudina, L., et al. (2022). "Ratio of Intensities of Blue and Red Light at Cultivation Influences Photosynthetic Light Reactions, Respiration, Growth, and Reflectance Indices in Lettuce." Biology 11(1): 60.
82. Zeng, Z.-L., et al. (2022). "Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves." Cells 11(2): 252.
83. Zhang, X., et al. (2022). "Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa." Ecotoxicology and Environmental Safety 241: 113813.
84. Zhang, Y., et al. (2022). "Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance." Environmental and Experimental Botany: 104848.
85. Zhang, Y., et al. (2022). "CfAPX, a cytosolic ascorbate peroxidase gene from Cryptomeria fortunei, confers tolerance to abiotic stress in transgenic Arabidopsis." Plant Physiology and Biochemistry.
86. Zhang, Z., et al. (2022). "Exogenous trehalose differently improves photosynthetic carbon assimilation capacities in maize and wheat under heat stress." Journal of Plant Interactions 17(1): 361-370.
87. Zheng, B., et al. (2022). "Regulative effect of imazethapyr on Arabidopsis thaliana growth and rhizosphere microbial community through multiple generations of culture." Plant and Soil.
88. Zhong, Y., et al. (2022). "Balancing Damage via Non-Photochemical Quenching, Phenolic Compounds and Photorespiration in Ulva prolifera Induced by Low-Dose and Short-Term UV-B Radiation." International journal of molecular sciences 23(5): 2693.
89. Zhu, Q., et al. (2022). "Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus." Photosynthesis Research.