一款有害藻华(HABs)研究的理想工具。
近日,德国WALZ公司在其网站上线了全新版的藻类叶绿素荧光仪WATER-PAM-II,与其第一代WATER-PAM的主机检测器分开不同,WATER-PAM-II将主机和检测器巧妙的合二为一,整体设计更加紧凑,野外现场使用更加便携。除此之外,WATER-PAM-II还同时搭载了蓝色450nm和红色630 nm的测量光、光化光、饱和脉冲以及730nm的远红光。另外WATER-PAM-II还搭载与了PHYTO-PAM-II类似的激发光谱,基于不同藻类在450nm,520nm,630nm,660nm的荧光激发光谱差异来计算和分析自然水体藻类成分(蓝藻,绿藻,硅甲藻),分别测量每个藻种类的叶绿素a浓度和计算总叶绿素a浓度。一台机器可以满足更多种藻类或浮游植物的测量需求。
全新的WATER-PAM-II使用触摸屏操作,其半透LED显示屏在自然光下清晰可见。单机界面将常用的菜单做了顶层设计,这些菜单可以完成绝大部分常规测量,如慢速荧光诱导动力学曲线、快速光曲线、AL+Y程序测量。顶层菜单还可以实现数据查看,光强列表查看等。更多机器设置可以进入到PAM Settings,如机器设置,光源选择,程序调用,传感器激活,存储记忆浏览,设备信息查看都非常简洁明了。此外,WATER-PAM-II还可以通过USB接口实现与Windows系统计算机连接,使用WinControl-3软件操作仪器。WinControl-3可以一键启动慢速荧光诱导动力学曲线和暗弛豫并进行淬灭分析。可以测量快速光曲线(RLC)并选择拟合方程得出拟合结果。可以记录样品叶绿素荧光变化的动态轨迹,绘制荧光参数的动态变化曲线,可以保存和导出数据报告。
全新的WATER-PAM-II使用8节AA充电电池(5号电池)供电,在不外接电源的情况下可进行长达1000次饱和脉冲分析;额外的备用电池组使得仪器可以在偏远地方进行长期研究。
全新的WATER-PAM-II可以选配流通样品室,在外接蠕动泵的情况下实现长期连续测量。
藻类光合作用及藻类组分的相关参数
Fo, Fm, Fv/Fm, F, Fm’, Fo’, Y(II)=ΔF/Fm’, qP, qN, NPQ, Y(NPQ), Y(NO), ETR, α,Ik,ETRmax
蓝藻,绿藻,硅甲藻叶绿素a浓度和总叶绿素a浓度等
应用领域
测量野外自然水样或实验室培养的微藻样品的光合作用,标准版是一台超便携的设备,在标准版的基础上加配流通版样品室和蠕动泵套件即可实现连续监测。
WATER-PAM-II还搭载与了PHYTO-PAM-II类似的荧光激发光谱,基于不同藻类在450nm,520nm,630nm,660nm的荧光激发光谱差异来计算和分析自然水体藻类成分(蓝藻,绿藻,硅甲藻),分别测量每个藻中类的叶绿素a浓度和计算总叶绿素a(Total Chla)浓度。
可应用于水生生物学、水域生态学、海洋学、湖沼学等领域,检测限达0.1 μgChl/L。可用于有害藻华(HABs)的早期预警。
相关背景
1998年,德国WALZ公司设计并推出了高灵敏度调制叶绿素荧光仪WATER-PAM用于测量水体中浮游植物的叶绿素荧光,研究藻类光合作用。在过去的二十多年时间里,使用WATER-PAM荧光仪发表的科研论文超过500多篇。
参考文献
数据来源:光合作用文献Endnote数据库; 原始数据来源:Google Scholar
WATER-PAM-II近期刚推出,以下目录为2021年使用WATER-PAM发表文献列表
1. Alekseev, A. A., et al. (2021). "Influence of mercury salts on the condition of algae as studied by fluorescence methods." 9th International Conference on Mathematical Modeling 2328(1): 050001.
2. Baho, D. L., et al. (2021). "Ecological Memory of Historical Contamination Influences the Response of Phytoplankton Communities." Ecosystems.
3. Bhagooli, R., et al. (2021). "Chlorophyll fluorescence – A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants." Marine pollution bulletin 165: 112059.
4. Castro-Varela, P. A., et al. (2021). "Photobiological Effects on Biochemical Composition in Porphyridium cruentum (Rhodophyta) with a Biotechnological Application." Photochemistry and Photobiology n/a(n/a).
5. Chen, R.-S., et al. (2021). "Effects of Mn2+ on neutral lipid content, C4 pathway, and related gene expression in Phaeodactylum tricornutum." Journal of Applied Phycology.
6. Gu, Z., et al. (2021). "Enhancement of nutrients removal and biomass accumulation of Chlorella vulgaris in pig manure anaerobic digestate effluent by the pretreatment of indigenous bacteria." Bioresource Technology 328: 124846.
7. Kennedy, F., et al. (2021). "Rapid changes in spectral composition after darkness influences nitric oxide, glucose and hydrogen peroxide production in the Antarctic diatom Fragilariopsis cylindrus." Polar Biology.
8. Li, S., et al. (2021). "Exploring the potential of photosynthetic induction factor for the commercial production of fucoxanthin in Phaeodactylum tricornutum." Bioprocess and biosystems engineering.
9. Li, X., et al. (2021). "Effects of periodical dehydration on biomass yield and biochemical composition of the edible red alga Pyropia yezoensis grown at different salinities." Algal Research 56: 102315.
10. Puig-Fàbregas, J., et al. (2021). "Evaluation of actin as a reference for quantitative gene expression studies in Emiliania huxleyi (Prymnesiophyceae) under ocean acidification conditions." Phycologia: 1-10.
11. Soleymani Robati, S. M., et al. (2021). "Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures." Applied Microbiology and Biotechnology.
12. Song, Y., et al. (2021). "Electrokinetic detection and separation of living algae in a microfluidic chip: implication for ship’s ballast water analysis." Environmental Science and Pollution Research.
13. Xi, Y., et al. (2021). "Photosynthetic profiling of a Dunaliella salina mutant DS240G-1 with improved β-carotene productivity induced by heavy ions irradiation2021." International Journal of Agricultural and Biological Engineering.
14. Xu, K., et al. (2021). "Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles." Environmental Pollution: 116508.
15. Zhao, L., et al. (2021). "Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa." Aquatic Toxicology 235: 105826.
16. Zhu, J., et al. (2021). "Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117-T6." Aquaculture 531: 735853.
WALZ官网链接地址 | 尊龙凯时 - 人生就是搏!科技官网链接地址 |