AgriPheno提供农作物重要性状功能基因定位服务,结合芯片和高通量测序开发材料间的SNP位点,并结合高通量表型测试,提供基因型-表型-育种的整套实验流程设计与服务。
超高通量基因分型-分子标记检测平台-Nexar
Nexar系统是快速、自动化的内联仪器,包括Nexar®模块化内联液处理与分析系统、Soellex®高通量PCR水浴热循环系统和Araya®内联荧光检测系统,可支持样本和阵列的高通量处理。Nexar利用创新的ArrayTapeTM(阵列卷带)系列耗材,能够在高精确度和准确性下运行。同时配备KASP Array Tape Master mix进行竞争性等位基因特异性PCR,可在广泛的基因组DNA样品中,对SNPs和特定位点上的InDels进行精准的双等位基因分型。
Nexar系统模块化内联平台与Array Tape的设计实现了基于微孔板技术的多功能性,并且几乎消除了手动操作和复杂的仪器操作。这种灵活的微孔板替代品可促进整个实验室的内联和整合自动化,并有助于终点PCR,qPCR和终点等温DNA扩增的应用。每个96孔,384孔和768孔阵列都标有独特的条形码标签,确保在处理过程中和加工后准确识别各个样品。此外,还可提供定制化的阵列,包括RNAse,DNAse和无热原选项。
Nexar 系统
Nexar® |
Soellex® | Araya® |
Nexar®
Nexar作为超高通量解决方案,是一套用于Array Tape(阵列卷带)样品和试剂处理的内联液体处理系统。该仪器提供分装、密封和源板存储,以及可选进程,如孵育和脱水。这一灵活的模块配置可以处理各种应用进程。
Soellex®
Soellex为三室水浴热循环系统,能够在一轮运行中同时热循环多达三个Array Tape(阵列卷带)线轴(230,400个反应孔)或152个微孔板(384孔)。
Araya®
Araya是内联荧光检测系统,专为Array Tape(阵列卷带)的自动扫描而设计。该系统可作为独立仪器或Nexar的内联模块使用。
Intellics®
创新的配套软件提供集中数据管理、仪器监控、智能运行优化、Protocol生成和简化数据分析。
应用领域
粮食作物:水稻、小麦、玉米、土豆等
模式植物:拟南芥、烟草、二穗短柄草等
蔬菜作物:生菜、番茄、甜菜、黄瓜、甘蓝、菠菜等
模式动物:人、小白鼠、斑马鱼等
常见牲畜:牛、猪、山羊等
应用案例
图1 典型的基因分型富集图
注:每个数据点代表一个独立的DNA样本的荧光信号,相同基因型的样本会发出相似水平的荧光,因此富集在一起。
服务项目
• 目标基因/性状标记开发 • 全基因组标记开发 • 遗传图谱的构建 • 图位克隆 • 背景筛查 • 蔬菜等纯度检测 • 植物身份鉴定/分群 |
服务特点
• 适用于超高通量自动化检测,液体处理、孵育与检测等流程一体化
• 反应体系微型化,显著降低单个数据点的成本
• 兼容粗提的DNA样本,并可灵活选用化学试剂
• 专业化生物信息平台及团队
• 大规模数据存储及数据处理服务器
客户提供
• 基因或指定区间信息
• 符合要求的供体/受体材料的DNA、叶片或种子等植物组织
服务周期
• 根据特定序列中变异位点设计标记:10-25个工作日
• 根据特定供体与特定回交亲本开发:10-20个工作日
• 基因初步定位:30~40个工作日
• 基因精细定位:30~40个工作日
• 已克隆基因序列开发: 15-30个工作日
• 全基因组标记开发:4-6个月
• 未克隆已定位基因标记开发:根据性状复杂程度确定
视频链接:http://v.youku.com/v_show/id_XNDAzMDE5NjU2OA==.html?spm=a2h3j.8428770.3416059.1
参考文献:
2017
Lennon J R , Matthew K , Major G , et al. Identification of Teosinte Alleles for Resistance to Southern Leaf Blight in Near Isogenic Maize Lines[J]. Crop Science, 2017, 57(4):1973-.
Zhang J , Wen Z , Li W , et al. Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J]. Molecular Breeding, 2017, 37(5):60.
King Z R , Childs S P , Harris D K , et al. A new soybean rust resistance allele from PI 423972 at theRpp4locus[J]. Molecular Breeding, 2017, 37(5):62.
2016
Patil G , Do T , Vuong T D , et al. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean[J]. Scientific Reports, 2016, 6(19199).
Dilip C , Sudakshina P , Mathew P , et al. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity? Roundup Ready 2 Yield? Soybean in Seed Samples[J]. BioMed Research International, 2016, 2016:1-12.
Jamann T M , Luo X , Morales L , et al. A remorin gene is implicated in quantitative disease resistance in maize[J]. Theoretical & Applied Genetics, 2016, 129(3):591-602.
Jamann T M , Luo X , Morales L , et al. A remorin gene is implicated in quantitative disease resistance in maize[J]. Theoretical & Applied Genetics, 2016, 129(3):591-602.
King, Z. R., D. K. Harris, E. D. Wood, J. W. Buck, H. R. Boerma, and Z. Li. 2016. Registration of Four Near-Isogenic Soybean Lines of G00-3213 for Resistance to Asian Soybean Rust. J. Plant. Reg. 10:189-194. doi:10.3198/jpr2015.04.0027crg
Jiafa C , Cristian Z , Noemi O , et al. The Development of Quality Control Genotyping Approaches: A Case Study Using Elite Maize Lines[J]. PLOS ONE, 2016, 11(6):e0157236-.
Yao N , Lee C R , Semagn K , et al. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance[J]. Plos One, 2016, 11(8):e0160749.
Zimmermann J , Musyoki M K , Cadisch G , et al. Biocontrol agent Fusarium oxysporum f.sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres[J]. Fungal Ecology, 2016, 23:1-10.
2015
Azevedo G C , Cheavegattigianotto A , Bárbara F Negri, et al. Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P[J]. BMC Plant Biology, 2015, 15.
Nair S K , Babu R , Magorokosho C , et al. Fine mapping ofMsv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines[J]. Theoretical and Applied Genetics, 2015, 128(9):1839-1854.
Horn F , Habeku? A , Stich B . Linkage mapping of Barley yellow dwarf virus resistance in connected populations of maize[J]. BMC Plant Biology, 2015, 15(1):29.
Chandrasena, D., Y. Wang, C. Bales, J. Yuan, C. Gu, and D. Wang. 2015. Pyramiding rag3, rag1b, rag4, and rag1c Aphid-Resistant Genes in Soybean Germplasm. Crop Sci. 55:2108-2115. doi:10.2135/cropsci2015.02.0089
Chen, Z.Y., Warburton, M.L., Hawkins, L.K., Wei, Q., Brown, R.L., Bhatnagar, D., Raruang, Y. 2016. Production of the 14 kDa trypsin inhibitor protein is important for maize resistance against Aspergillus flavus infection/aflatoxin. World Mycotoxin Journal. 9(2):215-228.
Hwang S , King C A , Ray J D , et al. Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations[J]. Theoretical and Applied Genetics, 2015, 128(10):2047-2065.
Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions[J]. Euphytica, 2015, 204(3):635-647.
Kappel K , Schr?Der U . Substitution of high-priced fish with low-priced species: Adulteration of common sole in German restaurants[J]. Food Control, 2016, 59:478-486.
Haring E , Voyta L L , Barbara Däubl, et al. Comparison of genetic and morphological characters in fossil teeth of grey voles from the Russian Far East (Rodentia: Cricetidae: Alexandromys)[J]. Mammalian Biology, 2015, 80(6):496-504.
Lennon J R , Matthew K , Major G , et al. Identification of Alleles Conferring Resistance to Gray Leaf Spot in Maize Derived from its Wild Progenitor Species Teosinte[J]. Crop Science, 2016, 56(1):209-.
Pili N N , Fran?A S C , Kyndt T , et al. Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya[J]. Plant and Soil, 2016, 405(1-2):371-380.
Tandzi L.N. and Ngonkeu E.L., 2015, Molecular Characterization of Selected Maize (Zea mays L.) Inbred Lines, Maize Genomics and Genetics, Vol.6, No.2, 1-5 (doi: 10.5376/mgg.2015.06.0002)
Li L , Hill-Skinner S , Liu S , et al. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase (FPGS)[J]. Plant Journal, 2015, 81(3):493-504.
2014
Tang H M , Liu S , Hillskinner S , et al. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation.[J]. Plant Journal, 2014, 77(3):380-392.
Rosas J E , Bonnecarrère, Victoria, Pérez de Vida, Fernando. One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)[J]. Electronic Journal of Biotechnology, 2014, 17(2):95-101.
Jamann T M , Poland J A , Kolkman J M , et al. Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize[J]. Genetics, 2014, 198(1):333-344.
Beyene Y , Semagn K , Mugo S . Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers[J]. Molecular Breeding, 2014, 34(3):1423-1435.
Sandhu N , Torres R O , Cruz M T S , et al. Traits and QTLs for development of dry direct-seeded rainfed rice varieties[J]. Journal of Experimental Botany, 2014.
Semagn K , Beyene Y , Babu R , et al. Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Sub-Saharan Africa[J]. Crop Science, 2015, 55(4):1449.
Luo W , Guo T , Yang Q , et al. Stacking of five favorable alleles for amylase content, fragrance and disease resistance into elite lines in rice ( Oryza sativa) by using four HRM-based markers and a linked gel-based marker[J]. Molecular Breeding, 2014, 34(3):805-815.
King Z , Serrano J , Roger Boerma H , et al. Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping[J]. Biotechnology Letters, 2014, 36(9):1875-1879.
Dao A , Sanou J , Mitchell S E , et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines[J]. BMC Genetics, 2014, 15(1):127.
Zheng P , Babar A , Parthasarathy S , et al. A truncated FatB resulting from a single nucleotide insertion is responsible for reducing saturated fatty acids in maize seed oil[J]. Theoretical and Applied Genetics, 2014, 127(7):1537-1547.
Mideros S X , Warburton M L , Jamann T M , et al. Quantitative Trait Loci Influencing Mycotoxin Contamination of Maize: Analysis by Linkage Mapping, Characterization of Near-Isogenic Lines, and Meta-Analysis[J]. Crop Science, 2014, 54(1):127.
Flávia F. Mendes, Lauro J. M. Guimarães, João Cândido Souza, et al. Genetic Architecture of Phosphorus Use Efficiency in Tropical Maize Cultivated in a Low-P Soil[J]. Crop Science, 2014, 54(4):1530.
Suwarno W B , Pixley K V , Palacios-Rojas N , et al. Formation of Heterotic Groups and Understanding Genetic Effects in a Provitamin A Biofortified Maize Breeding Program[J]. Crop Science, 2014, 54(1):14.
Ruddle P , Whetten R , Cardinal A , et al. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition.[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2014, 127(2):349-58.
Cardinal A J , Whetten R , Wang S , et al. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2014, 127(1):97-111.
2013
Imai I , Kimball J A , Conway B , et al. Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice[J]. Molecular Breeding, 2013, 32(1):101-120.
Haegeman A , Bauters L , Kyndt T , et al. Identification of candidate effector genes in the transcriptome of the rice root knot nematode\r, Meloidogyne graminicola[J]. Molecular Plant Pathology, 2013, 14(4):379-390.
Atalah B A , Fouquaert E , Damme E J M V . Promoter Analysis for Three Types of EUL-Related Rice Lectins in Transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2013, 31(6).
Lamkey C M , Helms T C , Goos R J . Marker-assisted versus phenotypic selection for iron-deficiency chlorosis in soybean[J]. Euphytica, 2013, 194(1):67-78.
Almeida G D , Makumbi D , Magorokosho C , et al. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance[J]. Theoretical & Applied Genetics, 2013, 126(3):583-600.
2012
Ruddle II, P. and Whetten, R. and Cardinal, A. and et al, . (2012) Effect of a novel mutation in a D9-stearoyl-ACP-desaturase on soybean seed oil composition. TAG Theoretical and Applied Genetics. pp. 1-9.
Chen W , Vanopdorp N , Fitzl D , et al. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for abrown midrib1mutation in maize[J]. Plant Molecular Biology, 2012, 80(3):289-297.
Semagn K , Magorokosho C , Vivek B S , et al. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers[J]. BMC Genomics, 2012, 13.
Semagn K , Beyene Y , Makumbi D , et al. Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines[J]. Theoretical and Applied Genetics, 2012, 125(7):1487-1501.
Bernardi J , Lanubile A , Li Q B , et al. Impaired Auxin Biosynthesis in the defective endosperm18 Mutant Is Due to Mutational Loss of Expression in the ZmYuc1 Gene Encoding Endosperm-Specific YUCCA1 Protein in Maize[J]. PLANT PHYSIOLOGY, 2012, 160(3):1318-1328.
Prigge V , Xu X , Li L , et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize[J]. Genetics, 2012, 190(2):781.
Mammadov J , Chen W , Mingus J , et al. Development of versatile gene-based SNP assays in maize (Zea maysL.)[J]. Molecular Breeding, 2012, 29(3):779-790.
Li S , Smith J R , Ray J D , et al. Identification of a new soybean rust resistance gene in PI 567102B[J]. Theoretical and Applied Genetics, 2012, 125(1):133-142.